RE&RERions

PARABOLAS INTO PARA-BOO-LAS
In a letter in Mathematics Teacher Feb-
ruary 2009 (“Reader Reflections,” vol.
102, no. 6, pp. 404-5), I provided some
steps for creating a mathematical valen-
tine using a graphing calculator. In MT
March 2010 (vol. 103, no. 7, p. 470),
gave some guidance for creating a mathe-
matical St. Patrick’s Day card, also using
a graphing calculator. My colleague Barb
Krueger and I have now collaborated on
creating a Halloween card.

The majority of the shapes on the
card are created by graphing transformed
quadratic equations. Students studying
graphing solutions to quadratic equa-
tions, translations or reflections, and
piecewise functions can develop similar
designs based on their own equations.
This card is an excellent project for sec-
ond-year algebra or precalculus students.

Fig. 1 (Ebert)
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The card (fig. 1 [Ebert]) can be
folded vertically and horizontally so that
the para-boo-la appears on the front of
the card and the directions on the inside.
I encourage readers to extend this activ-
ity and have students develop their own
images using transformations. Enjoy—
and happy Halloween!

David Ebert
dde@oregon.k12.wi.us
Oregon High School
Oregon, WI 53575

I\, For a PDF version of the instructions for
making this card, go to www.nctm.org/mt.

SUM OF THE ANGLES
IN A STAR POLYGON
Regarding star polygons as discussed
in “Mathematical Lens” (MT February
2008, vol. 101, no. 6, pp. 432-38): Figure
1 (Wilcock) shows how a formula can
be used to find the sum of the measures
of the interior angles of the {7/2} star
polygon. The formula can be generalized.
For the {7/2} star polygon, the
inscribed angle at vertex C intercepts the
arc AE, which has measure (3 - 27)/7.
Thus, the measure of angle C is 37/7.
Multiply this result by the number of
vertices (7) to obtain the sum of 37.
In general, if the star polygon is a
{p/d} polygon, any vertex will intercept

Fig. 1 (Wilcock)
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an arc whose length is (p — 2d) - 27/p.
Thus, the inscribed angle at a vertex has
measure (p — 2d) - w/p. There are p ver-
tices, so the sum of the interior angles
will be (p - 2d) « . From this formula,
we can see that p must be greater than
2d. Thus, as shown in table 1, p. 435,
when d = 2, p must be at least 5 for the
formula to make sense.
Doug Wilcock
dougw @capecodacademy.org
Cape Cod Academy (retired)
Osterville, MA 02665

EXPONENTIAL INEQUALITY
In John Robert Perrin’s article “An
Intriguing Exponential Inequality” (MT
August 2009, vol. 103, no. 1, pp. 50-55),
it is shown that the graph of the function
f(x) =¢” or f(x) = (¢")" = 1.445" has the
line with the equation y = x as a tangent.
The proof of this statement can be made
somewhat simpler without much calculus.
Let’s consider the exponential func-
tion f(x) = a*. The derivative at the point
X =X, is known to be

f'(x,)= a® «lna,

so that the tangent to the graph at the point
(x,, f(x,)) has the following equation:

y=flx)+ f(x)(x-x,)
=a® +a™ «Ina-(x -x,)
=aelnaex+a —a™ sIna-«x,
This equation must be identical with the

equation y = x, and comparison of the
slope with the y-intercept implies that

X
a®elna=1

and

Xo

X
a’—a’sna+x =0.

From the latter of these two equa-
tions, we can see that



