
In a letter in Mathematics Teacher Feb-
ruary 2009 (“Reader Reflections,” vol. 
102, no. 6, pp. 404–5), I provided some 
steps for creating a mathematical valen-
tine using a graphing calculator. In MT 
March 2010 (vol. 103, no. 7, p. 470), I 
gave some guidance for creating a mathe-
matical St. Patrick’s Day card, also using 
a graphing calculator. My colleague Barb 
Krueger and I have now collaborated on 
creating a Halloween card.

The majority of the shapes on the 
card are created by graphing transformed 
quadratic equations. Students studying 
graphing solutions to quadratic equa-
tions, translations or reflections, and 
piecewise functions can develop similar 
designs based on their own equations. 
This card is an excellent project for sec-
ond-year algebra or precalculus students.

The card (fig. 1 [Ebert]) can be 
folded vertically and horizontally so that 
the para-boo-la appears on the front of 
the card and the directions on the inside. 
I encourage readers to extend this activ-
ity and have students develop their own 
images using transformations. Enjoy—
and happy Halloween!

David Ebert
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Regarding star polygons as discussed 
in “Mathematical Lens” (MT February 
2008, vol. 101, no. 6, pp. 432–38): Figure 

1 (Wilcock) shows how a formula can 
be used to find the sum of the measures 
of the interior angles of the {7/2} star 
polygon. The formula can be generalized.

For the {7/2} star polygon, the 
inscribed angle at vertex C intercepts the 
arc AE, which has measure (3 • 2 )/7. 
Thus, the measure of angle C is 3 /7. 
Multiply this result by the number of 
vertices (7) to obtain the sum of 3 .

In general, if the star polygon is a 
{p/d} polygon, any vertex will intercept 

an arc whose length is (p – 2d) • 2 /p. 
Thus, the inscribed angle at a vertex has 
measure (p – 2d) • /p. There are p ver-
tices, so the sum of the interior angles 
will be (p – 2d) • . From this formula, 
we can see that p must be greater than 
2d. Thus, as shown in table 1, p. 435, 
when d = 2, p must be at least 5 for the 
formula to make sense. 
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In John Robert Perrin’s article “An 
Intriguing Exponential Inequality” (MT 
August 2009, vol. 103, no. 1, pp. 50–55), 
it is shown that the graph of the function 
f(x) = ex/e or f(x) = (e1/e)x

 ≈ 1.445
x has the 

line with the equation y = x as a tangent.
The proof of this statement can be made 
somewhat simpler without much calculus.

Let’s consider the exponential func-
tion f(x) = ax. The derivative at the point 
x = x0 is known to be 
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so that the tangent to the graph at the point 
(x0 , f(x0)) has the following equation:
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This equation must be identical with the 
equation y = x, and comparison of the 
slope with the y-intercept implies that
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From the latter of these two equa-
tions, we can see that 
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